Caras centrales

En particular, cuando el cubo es resuelto, aparte de las orientaciones de las caras centrales, siempre existirá un número par de caras centrales que requieren un giro de 90º. Las orientaciones de los centros incrementan el número total de permutaciones posibles del cubo de 43 252 003 274 489 856 000 (4.3 × 1019) a 88 580 102 706 155 225 088 000 (8.9 × 1022).25
Girar un cubo alrededor de su propio eje es considerado un cambio de la permutación, ya que involucra contar las posiciones de las caras centrales. En teoría, existen 6! formas de disponer las seis caras centrales del cubo, pero solo 24 de estas son posibles sin tener que desarmar el cubo. Cuando las orientaciones de los centros también son contadas, el total de las permutaciones incrementa de88 580 102 706 155 225 088 000 (8.9 × 1022) a 2 125 922 464 947 725 402 112 000 (2.1 × 1024).
No hay comentarios.:
Publicar un comentario